Carl Friedrich Gauss

Johann Carl Friedrich Gauss (Gauß) ▶/i (30 de abril de 1777, Brunswick23 de febrero de 1855, Göttingen), fue un matemático, astrónomo y físico alemán que contribuyó significativamente en muchos campos, incluida la teoría de números, el análisis matemático, la geometría diferencial, la geodesia, el magnetismo y la óptica. Considerado "el príncipe de las matemáticas" y "el matemático más grande desde la antigüedad", Gauss ha tenido una influencia notable en muchos campos de la matemática y de la ciencia, y es considerado uno de los matemáticos que más influencia ha tenido en la Historia. Fue de los primeros en extender el concepto de divisibilidad a otros conjuntos.
Gauss fue un niño prodigio, de quien existen muchas anécdotas acerca de su asombrosa precocidad siendo apenas un infante, e hizo sus primeros grandes descubrimientos mientras era apenas un adolescente. Completó su magnum opus, Disquisitiones Arithmeticae a los veintiún años (1798), aunque no sería publicado hasta 1801: Fue un trabajo fundamental para que se consolidara la teoría de los números y ha moldeado esta área hasta los días presentes.

Biografía

Juventud

Johann Carl Friedrich Gauss nació en la ciudad de Braunschweig (Brunswick), Alemania, el 30 de abril de 1777, en una familia muy pobre: Su abuelo era allí un humilde jardinero y repartidor. Nunca pudo superar la espantosa miseria con la que siempre convivió. De pequeño, Gauss fue respetuoso y obediente y, en su edad adulta, nunca criticó a su padre por haber sido tan rudo y violento, que murió poco después de que Gauss cumpliera 30 años.
Desde muy pequeño, Gauss mostró su talento para los números y para el lenguaje. Aprendió a leer solo y, sin que nadie lo ayudara, aprendió muy rápido la aritmética desde muy pequeño. En 1784, a los siete años de edad, ingresó en la escuela primaria de Brunswick donde daba clases un profesor llamado Büttner. Se cuenta la anécdota de que, a los dos años de estar en la escuela, durante la clase de Aritmética, el profesor propuso el problema de sumar los números de una progresión aritmética.1 Gauss halló la respuesta correcta casi inmediatamente diciendo «Ligget se'» (ya está). Al acabar la hora se comprobaron las soluciones y se vio que la solución de Gauss era correcta, mientras que no lo eran muchas de las de sus compañeros.
Desde que Gauss conoció a Bartels, se aceleraron sus progresos en Matemáticas. Ambos estudiaban juntos, se apoyaban y se ayudaban para descifrar y entender los manuales que tenían sobre álgebra y análisis elemental. En estos años se empezaron a gestar algunas de las ideas y formas de ver las matemáticas, que caracterizaron posteriormente a Gauss. Se dio cuenta, por ejemplo, del poco rigor en muchas demostraciones de los grandes matemáticos que le precedieron, como Newton, Euler, Lagrange y otros más.
A los 12 años ya miraba con cierto recelo los fundamentos de la Geometría, y a los 16 tuvo sus primeras ideas intuitivas sobre la posibilidad de otro tipo de geometría. A los 17 años, Gauss se dio a la tarea de completar lo que, a su juicio, habían dejado a medias sus predecesores en materia de teoría de números. Así descubrió su pasión por la Aritmética, área en la que poco después tuvo sus primeros triunfos. Su gusto por la aritmética prevaleció por toda su vida, ya que para él “La Matemática es la reina de las ciencias y la Aritmética es la reina de las Matemáticas”. Gauss tenía 14 años cuando conoció al duque Ferdinand. Éste quedó fascinado por lo que había oído del muchacho, y por su modestia y timidez. Decidió solventar todos los gastos de Gauss para asegurar que su educación llegara a buen fin.
Al año siguiente de conocer al duque, Gauss ingresó al Colegio Carolino para continuar sus estudios, y lo que sorprendió a todos fue su facilidad para las lenguas. Aprendió y dominó el griego y el latín en muy poco tiempo. Estuvo tres años en el Colegio Carolino y, al salir, no tenía claro si quería dedicarse a las matemáticas o a la filología. En esta época ya había descubierto su ley de los mínimos cuadrados. Este trabajo marca el interés de Gauss por la teoría de errores de observación y su distribución.

Madurez

Distribución normal
En 1796 demostró que se puede dibujar un polígono regular de 17 lados con regla y compás.
Fue el primero en probar rigurosamente el teorema fundamental del álgebra (disertación para su tesis doctoral en 1799), aunque una prueba casi completa de dicho teorema fue hecha por Jean Le Rond d'Alembert anteriormente.
En 1801 publicó el libro Disquisitiones Arithmeticae, con seis secciones dedicadas a la Teoría de números, dándole a esta rama de las matemáticas una estructura sistematizada. En la última sección del libro expone su tesis doctoral. Ese mismo año predijo la órbita de Ceres aproximando parámetros por mínimos cuadrados.
En 1809 fue nombrado director del Observatorio de Göttingen. En este mismo año publicó Theoria motus corporum coelestium in sectionibus conicis Solem ambientium describiendo cómo calcular la órbita de un planeta y cómo refinarla posteriormente. Profundizó sobre ecuaciones diferenciales y secciones cónicas.
Gauss murió en Göttingen el 23 de febrero de 1855.

Obra Maestra

Cubierta de la edición original de Disquisitiones arithmeticae de Carl Friedrich Gauss, libro fundamental de la teoría de números.
La primera estancia de Gauss en Gotinga duró tres años, que fueron de los más productivos de su vida. Regresó a su natal Brunswick a finales de 1798 sin haber recibido ningún título en la Universidad, pero su primera obra maestra estaba casi lista. La obra estuvo lista a finales del año 1798, pero fue hasta 1801. Gauss la escribió en latín y la tituló Disquisitiones arithmeticae.
Por supuesto, este libro está dedicado a su mecenas, el duque Ferdinand, por quien Gauss sentía mucho respeto y agradecimiento. Es un tratado de la teoría de números en el que se sintetiza y perfecciona todo el trabajo previo en esta área. La obra consta de 8 capítulos pero el octavo no se pudo imprimir por cuestiones financieras. El teorema fundamental del álgebra establece que un polinomio en una variable, no constante y a coeficientes complejos, tiene tantas raíces como su grado.

La muerte del Duque

Carl Wilhelm Ferdinand, duque de Brunswick, a quien Gauss vivió eternamente agradecido por su invaluable e incondicional apoyo, no sólo fue un protector inteligente de los jóvenes con talento y un cordial gobernante, sino también un buen soldado. Federico el Grande admiró y estimó mucho su bravura y el genio militar que demostró durante la guerra de los 7 años, que ocurrió entre 1756 y 1763.